第四百零五章 溫差發電

    

    黃豪傑一篇篇的翻閱著關於離子發和光子發的資料,這些資料很多是理論上的論文,當然其中離子發方面的實際應用還是有不少的。一窩蟻  m.yiwoyi.com

    

    米粒家、太陽國、西洲聯盟都有離子發的衛星或者探測器,特別是深空探測器方面,鈈同位素電池配合離子發,才可以飛行幾十年。

    

    不然那些動輒飛行幾十年的探測器,根本沒有辦法採用化學燃料發動機。

    

    看了小半天,但是解決核聚變小型化的熱量問題,有用的依舊是寥寥無幾。

    

    不過離子發和光子發還是非常有潛力的,黃豪傑向忠問道

    

    「我記得我們是不是有一個離子發動機研究所?」

    

    [是的,離子發動機研究所在基隆市,所長是周博通,總工程師是三島季。]

    

    「周伯通?」黃豪傑好奇的抬起頭來。

    

    [╭(′61&nsp;&nsp;o&nsp;&nsp;61′)╭74是博學多才的博。]

    

    「額……」黃豪傑頓時一尬,連忙轉移話題

    

    「將我實驗室裡面的5、6、7號小型反應爐送去離子發動機研究所,讓他們研究核聚變的離子發動機,順便連光子發動機的任務也給他們了。」

    

    [好的。]

    

    黃豪傑吩咐了這個事情之後,便將注意力集中在溫差發電上面,溫差發電是一種簡單直接的發電技術。

    


    無需複雜的設備裝置,只要一種叫做「熱電材料」的特殊材料,在其兩端施加以溫度差——比如,一端是27攝氏度涼水,另一端是100攝氏度的開水,這73攝氏度的溫度差,就可以讓這種材料發出一定功率的電能。

    

    既然優點這麼多、潛力巨大的發電技術,為什麼很少聽說有應用?

    

    因為溫差發電有一個致命的缺陷——效率太低。

    

    現有最好的溫差發電材料,其熱效率只有常規火力發電廠的一半不到,比地熱發電的效率還低(地熱發電效率在6~18左右),這麼低的熱效率,那些資本家又不是傻叉,怎麼會做這種虧本買賣。

    

    不過黃豪傑在翻閱到一篇發表在&nsp;&nsp;natr&nsp;&nsp;上的論文時,發現這篇論文給了他給不少的啟發。

    

    這篇論文是由西洲聯盟—奧地利維也納工業大學&nsp;&nsp;rnst&nsp;&nsp;ar&nsp;&nsp;教授領銜的研究團隊發表的。

    

    論文之中的數據顯示,他們實現了溫差發電材料的關鍵性能指標——熱電優值係數(zt&nsp;&nsp;值)的翻倍。

    

    他們開發的熱電材料具有高達&nsp;&nsp;5&nsp;&nsp;到&nsp;&nsp;6&nsp;&nsp;的熱電優值係數,而之前最好的材料一般也只有大約&nsp;&nsp;25&nsp;&nsp;到&nsp;&nsp;28。

    

    黃豪傑頓時重點關注起來,讓忠將這個團隊關於熱電材料的資料收集起來,不一會一大堆資料出現在他全息電腦裡面。

    

    溫差發電要想提高熱電效率,就必須要提高熱電材料的&nsp;&nsp;zt&nsp;&nsp;值,只有zt值達到或者超過&nsp;&nsp;4,這種技術才具有商用價值。然而,熱電效應發現&nsp;&nsp;100&nsp;&nsp;多年過去了,科學家們連&nsp;&nsp;3&nsp;&nsp;都很難達到。

    

    為什麼熱電材料的&nsp;&nsp;zt&nsp;&nsp;值這麼難提高?這要從溫差發電技術所依賴的物理原理——熱電效應本身說起。

    

    金屬或者半導體的內部存在有一定數量的載流子(比如電子或者空穴),而這些載流子的密度會隨著溫度的變化而出現變化,如果物體的一端溫度高,另一端溫度低,就會在同一個物體中間出現不同的載流子密度。

    

    只要可以維持物體兩端的溫差,就能使載流子持續擴散,從而形成穩定的電壓,這便是溫差發電的原理。

    

    而溫差發電的效率,取決於熱電材料的三個重要的特性

    

    第一、塞貝克係數(材料在有溫度差的情況下產



  
相關:  從推進城到多元宇宙  納米崛起    我的功法全靠撿  超腦太監  萬古第一婿  超時空評測  從西伯利亞開始當神豪  
搜"銀河科技帝國"
360搜"銀河科技帝國"
語言選擇